Properties
Private _distributions
Defined in ql/experimental/math/tcopulapolicy.ts:184
Private _latentVarsCumul
Defined in ql/experimental/math/tcopulapolicy.ts:186
Private _latentVarsInverters
Defined in ql/experimental/math/tcopulapolicy.ts:187
Private _varianceFactors
_variance
Factors: Real [] = []
Defined in ql/experimental/math/tcopulapolicy.ts:185
Methods
allFactorCumulInverter
allFactorCumulInverter( probs: Real [] ) : Real []
Defined in ql/experimental/math/tcopulapolicy.ts:155
Parameters
Returns Real []
cumulativeY
Defined in ql/experimental/math/tcopulapolicy.ts:99
Parameters
cumulativeZ
Defined in ql/experimental/math/tcopulapolicy.ts:108
Parameters
density
Defined in ql/experimental/math/tcopulapolicy.ts:114
Parameters
getInitTraits
Defined in ql/experimental/math/tcopulapolicy.ts:86
Returns any
init
Defined in ql/experimental/math/tcopulapolicy.ts:27
Parameters
Default value factorWeights: Real [] [] = [[]]
Default value vals: initTraits = new TCopulaPolicy.initTraits()
inverseCumulativeDensity
Defined in ql/experimental/math/tcopulapolicy.ts:145
Parameters
inverseCumulativeY
Defined in ql/experimental/math/tcopulapolicy.ts:131
Parameters
inverseCumulativeZ
Defined in ql/experimental/math/tcopulapolicy.ts:140
Parameters
numFactors
Defined in ql/experimental/math/tcopulapolicy.ts:81
varianceFactors
varianceFactors( ) : Real []
Defined in ql/experimental/math/tcopulapolicy.ts:95
Returns Real []
Legend
Module
Object literal
Variable
Function
Function with type parameter
Index signature
Type alias
Type alias with type parameter
Enumeration
Enumeration member
Property
Method
Interface
Interface with type parameter
Constructor
Property
Method
Index signature
Class
Class with type parameter
Constructor
Property
Method
Accessor
Index signature
Inherited constructor
Inherited property
Inherited method
Inherited accessor
Protected property
Protected method
Protected accessor
Private property
Private method
Private accessor
Static property
Static method
Student-T Latent Model's copula policy.
Describes the copula of a set of normalized Student-T independent random factors to be fed into the latent variable model. The latent model requires the independent variables to be of unit variance so the policy expects the factors coefficients to be as usual and the T variables to be normalized, the normalization is performed by the policy. To normalize the random variables they are divided by the square root of the variance of each T ($ \frac{\nu}{\nu-2}$)