Class NonLinearLeastSquare
Constructors
constructor
Defined in ql/math/optimization/leastsquare.ts:133
Parameters
Default value accuracy: Real = 0.0001
Default value maxiter: Size = 100
Default value om: OptimizationMethod = new ConjugateGradient()
Properties
Private _accuracy
Defined in ql/math/optimization/leastsquare.ts:201
Private _bestAccuracy
Defined in ql/math/optimization/leastsquare.ts:202
Private _c
Defined in ql/math/optimization/leastsquare.ts:209
Private _exitFlag
Defined in ql/math/optimization/leastsquare.ts:199
Private _initialValue
Defined in ql/math/optimization/leastsquare.ts:195
Private _maxIterations
Defined in ql/math/optimization/leastsquare.ts:204
Private _nbIterations
Defined in ql/math/optimization/leastsquare.ts:205
Private _om
Defined in ql/math/optimization/leastsquare.ts:207
Private _resnorm
Defined in ql/math/optimization/leastsquare.ts:197
Private _results
Defined in ql/math/optimization/leastsquare.ts:194
Methods
exitFlag
Defined in ql/math/optimization/leastsquare.ts:185
iterationsNumber
Defined in ql/math/optimization/leastsquare.ts:189
lastValue
Defined in ql/math/optimization/leastsquare.ts:181
perform
Defined in ql/math/optimization/leastsquare.ts:144
Parameters
Returns Real []
residualNorm
Defined in ql/math/optimization/leastsquare.ts:177
results
Defined in ql/math/optimization/leastsquare.ts:173
Returns Real []
setInitialValue
setInitialValue( initialValue: Real [] ) : void
Defined in ql/math/optimization/leastsquare.ts:169
Parameters
Returns void
Legend
Module
Object literal
Variable
Function
Function with type parameter
Index signature
Type alias
Type alias with type parameter
Enumeration
Enumeration member
Property
Method
Interface
Interface with type parameter
Constructor
Property
Method
Index signature
Class
Class with type parameter
Constructor
Property
Method
Accessor
Index signature
Inherited constructor
Inherited property
Inherited method
Inherited accessor
Protected property
Protected method
Protected accessor
Private property
Private method
Private accessor
Static property
Static method
Non-linear least-square method.
Using a given optimization algorithm (default is conjugate gradient),
$$ min { r(x) : x in R^n } $$
where $ r(x) = |f(x)|^2 $ is the Euclidean norm of $ f(x) $ for some vector-valued function $ f $ from $ R^n $ to $ R^m $, $$ f = (f_1, ..., f_m) $$ with $ f_i(x) = b_i - \phi(x,t_i) $ where $ b $ is the vector of target data and $ phi $ is a scalar function.
Assuming the differentiability of $ f $, the gradient of $ r $ is defined by $$ grad r(x) = f'(x)^t.f(x) $$