Type aliases
Static sample_type
Defined in ql/math/randomnumbers/randomizedlds.ts:134
Constructors
constructor
Defined in ql/math/randomnumbers/randomizedlds.ts:39
Parameters
Default value PRS: USG < Real [] > = new RandomSequenceGenerator(new MersenneTwisterUniformRng().init1(SeedGenerator.get()))
Properties
LDS
Defined in ql/math/randomnumbers/randomizedlds.ts:123
PRS
Defined in ql/math/randomnumbers/randomizedlds.ts:124
Private _dimension
Defined in ql/math/randomnumbers/randomizedlds.ts:129
Private _ldsg
Defined in ql/math/randomnumbers/randomizedlds.ts:126
Private _pristineldsg
Defined in ql/math/randomnumbers/randomizedlds.ts:127
Private _prsg
Defined in ql/math/randomnumbers/randomizedlds.ts:128
Private _randomizer
Defined in ql/math/randomnumbers/randomizedlds.ts:131
Private x
Defined in ql/math/randomnumbers/randomizedlds.ts:130
Methods
dimension
Defined in ql/math/randomnumbers/randomizedlds.ts:119
init1
Defined in ql/math/randomnumbers/randomizedlds.ts:50
Parameters
Default value prsg: USG < Real [] > = new RandomSequenceGenerator(new MersenneTwisterUniformRng().init1(SeedGenerator.get()))
init2
Defined in ql/math/randomnumbers/randomizedlds.ts:73
Parameters
init3
Defined in ql/math/randomnumbers/randomizedlds.ts:86
Parameters
lastSequence
Defined in ql/math/randomnumbers/randomizedlds.ts:110
nextRandomizer
Defined in ql/math/randomnumbers/randomizedlds.ts:114
Returns void
nextSequence
Defined in ql/math/randomnumbers/randomizedlds.ts:98
Legend
Module
Object literal
Variable
Function
Function with type parameter
Index signature
Type alias
Type alias with type parameter
Enumeration
Enumeration member
Property
Method
Interface
Interface with type parameter
Constructor
Property
Method
Index signature
Class
Class with type parameter
Constructor
Property
Method
Accessor
Index signature
Inherited constructor
Inherited property
Inherited method
Inherited accessor
Protected property
Protected method
Protected accessor
Private property
Private method
Private accessor
Static property
Static method
Randomized (random shift) low-discrepancy sequence
Random-shifts a uniform low-discrepancy sequence of dimension $ N $ by adding (modulo 1 for each coordinate) a pseudo-random uniform deviate in $ (0, 1)^N. $ It is used for implementing Randomized Quasi Monte Carlo.
The uniform low discrepancy sequence is supplied by LDS; the uniform pseudo-random sequence is supplied by PRS.
Both class LDS and PRS must implement the following interface:
LDS::sample_type LDS::nextSequence() const; Size LDS::dimension() const;
LDS and PRS must have the same dimension $ N $
warning Inverting LDS and PRS is possible, but it doesn't make sense.
todo implement the other randomization algorithms
test correct initialization is tested.