Options
All
  • Public
  • Public/Protected
  • All
Menu

statistics class with convergence table

This class decorates another statistics class adding a convergence table calculation. The table tracks the convergence of the mean.

It is possible to specify the number of samples at which the mean should be stored by mean of the second template parameter; the default is to store $ 2^{n-1} $ samples at the $ n $-th step. Any passed class must implement the following interface:

 Size initialSamples() const;
 Size nextSamples(Size currentSamples) const;

as well as a copy constructor.

test results are tested against known good values.

Hierarchy

  • ConvergenceStatistics

Index

Constructors

constructor

  • Parameters

    • T: any
    • Default value U: any = new DoublingConvergenceSteps()

    Returns ConvergenceStatistics

Properties

T

T: any

U

U: any

Private _nextSampleSize

_nextSampleSize: Size

Private _samplingRule

_samplingRule: any

Private _table

_table: Array<[Size, Real]> = []

Methods

add

  • Parameters

    • value: Real
    • Default value weight: Real = 1

    Returns void

addSequence

  • addSequence(values: Real[], weights?: Real[]): void
  • Parameters

    • values: Real[]
    • Default value weights: Real[] = []

    Returns void

convergenceTable

  • convergenceTable(): Array<[Size, Real]>
  • Returns Array<[Size, Real]>

downsideSamples

  • downsideSamples(): Size
  • Returns Size

downsideWeightSum

  • downsideWeightSum(): Real
  • Returns Real

errorEstimate

  • errorEstimate(): Real
  • Returns Real

expectationValue1

expectationValue2

gaussianAverageShortfall

  • gaussianAverageShortfall(target: Real): Real
  • Parameters

    Returns Real

gaussianDownsideDeviation

  • gaussianDownsideDeviation(): Real
  • Returns Real

gaussianDownsideVariance

  • gaussianDownsideVariance(): Real
  • Returns Real

gaussianExpectedShortfall

  • gaussianExpectedShortfall(percentile: Real): Real
  • Parameters

    Returns Real

gaussianPercentile

  • gaussianPercentile(percentile: Real): Real
  • Parameters

    Returns Real

gaussianPotentialUpside

  • gaussianPotentialUpside(percentile: Real): Real
  • Parameters

    Returns Real

gaussianRegret

  • Parameters

    Returns Real

gaussianShortfall

  • Parameters

    Returns Real

gaussianTopPercentile

  • gaussianTopPercentile(percentile: Real): Real
  • Parameters

    Returns Real

gaussianValueAtRisk

  • gaussianValueAtRisk(percentile: Real): Real
  • Parameters

    Returns Real

kurtosis

  • Returns Real

max

  • Returns Real

mean

  • Returns Real

min

  • Returns Real

percentile

  • Parameters

    Returns Real

reset

  • reset(): void
  • Returns void

samples1

  • Returns Size

samples2

  • Parameters

    Returns Size

skewness

  • Returns Real

standardDeviation

  • standardDeviation(): Real
  • Returns Real

topPercentile

  • Parameters

    Returns Real

variance

  • Returns Real

weightSum1

  • weightSum1(): Real
  • Returns Real

weightSum2

  • Parameters

    Returns Real