It can accumulate a set of data and return statistics (e.g: mean,
variance, skewness, kurtosis, error estimation, etc.).
This class is a wrapper to the boost accumulator library.
returns the downside variance, defined as
$$ \frac{N}{N-1} \times \frac{ \sum_{i=1}^{N}
\theta \times x_i^{2}}{ \sum_{i=1}^{N} w_i} $$,
where $ \theta $ = 0 if x > 0 and
$ \theta $ =1 if x <0
returns the excess kurtosis, defined as
$$ \frac{N^2(N+1)}{(N-1)(N-2)(N-3)}
\frac{\left\langle \left(x-\langle x \rangle \right)^4
\right\rangle}{\sigma^4} - \frac{3(N-1)^2}{(N-2)(N-3)}. $$
The above evaluates to 0 for a Gaussian distribution.
returns the skewness, defined as
$$ \frac{N^2}{(N-1)(N-2)} \frac{\left\langle \left(
x-\langle x \rangle \right)^3 \right\rangle}{\sigma^3}. $$
The above evaluates to 0 for a Gaussian distribution.
Statistics tool based on incremental accumulation
It can accumulate a set of data and return statistics (e.g: mean, variance, skewness, kurtosis, error estimation, etc.). This class is a wrapper to the boost accumulator library.