Options
All
  • Public
  • Public/Protected
  • All
Menu

Statistics analysis of N-dimensional (sequence) data

It provides 1-dimensional statistics as discrepancy plus N-dimensional (sequence) statistics (e.g. mean, variance, skewness, kurtosis, etc.) with one component for each dimension of the sample space.

For most of the statistics this class relies on the StatisticsType underlying class to provide 1-D methods that will be iterated for all the components of the N-D data. These lifted methods are the union of all the methods that might be requested to the 1-D underlying StatisticsType class, with the usual compile-time checks provided by the template approach.

test the correctness of the returned values is tested by checking them against numerical calculations.

Hierarchy

Index

Constructors

constructor

Properties

S

S: any

Protected _dimension

_dimension: Size

Protected _quadraticSum

_quadraticSum: Matrix

Protected _results

_results: Real[] = []

Protected _stats

_stats: any[] = []

Methods

add

  • add(sample: Real[], weight?: Real): void
  • Parameters

    • sample: Real[]
    • Default value weight: Real = 1

    Returns void

averageShortfall

  • Parameters

    Returns Real[]

correlation

  • Returns Matrix

covariance

  • Returns Matrix

downsideDeviation

  • downsideDeviation(): Real[]
  • Returns Real[]

downsideVariance

  • downsideVariance(): Real[]
  • Returns Real[]

errorEstimate

  • errorEstimate(): Real[]
  • Returns Real[]

expectedShortfall

  • Parameters

    Returns Real[]

gaussianAverageShortfall

  • gaussianAverageShortfall(x: Real): Real[]
  • Parameters

    Returns Real[]

gaussianExpectedShortfall

  • gaussianExpectedShortfall(x: Real): Real[]
  • Parameters

    Returns Real[]

gaussianPercentile

  • Parameters

    Returns Real[]

gaussianPotentialUpside

  • gaussianPotentialUpside(x: Real): Real[]
  • Parameters

    Returns Real[]

gaussianShortfall

  • Parameters

    Returns Real[]

gaussianValueAtRisk

  • Parameters

    Returns Real[]

init

kurtosis

  • kurtosis(): Real[]
  • Returns Real[]

max

  • Returns Real[]

mean

  • Returns Real[]

min

  • Returns Real[]

percentile

  • Parameters

    Returns Real[]

potentialUpside

  • Parameters

    Returns Real[]

regret

  • Parameters

    Returns Real[]

reset

  • reset(dimension?: Size): void
  • Parameters

    • Default value dimension: Size = 0

    Returns void

samples1

  • Returns Size

samples2

  • samples2(inRange: any): Size
  • Parameters

    • inRange: any

    Returns Size

semiDeviation

  • semiDeviation(): Real[]
  • Returns Real[]

semiVariance

  • semiVariance(): Real[]
  • Returns Real[]

shortfall

  • Parameters

    Returns Real[]

size

  • Returns Size

skewness

  • skewness(): Real[]
  • Returns Real[]

standardDeviation

  • standardDeviation(): Real[]
  • Returns Real[]

valueAtRisk

  • Parameters

    Returns Real[]

variance

  • variance(): Real[]
  • Returns Real[]

weightSum1

  • weightSum1(): Real
  • Returns Real

weightSum2

  • weightSum2(inRange: any): Size
  • Parameters

    • inRange: any

    Returns Size