Options
All
  • Public
  • Public/Protected
  • All
Menu

Base implementation for tridiagonal operator

warning

to use real time-dependant algebra, you must overload the corresponding operators in the inheriting time-dependent class.

Hierarchy

Index

Properties

_diagonal

_diagonal: Real[]

_lowerDiagonal

_lowerDiagonal: Real[]

_n

_n: Size

_temp

_temp: Real[]

_timeSetter

_timeSetter: TimeSetter

_upperDiagonal

_upperDiagonal: Real[]

Methods

SOR

  • solve linear system with SOR approach

    Parameters

    Returns Real[]

applyTo

  • apply operator to a given array

    Parameters

    Returns Real[]

diagonal

  • diagonal(): Real[]
  • Returns Real[]

init1

  • Parameters

    • Default value size: Size = 0

    Returns TridiagonalOperator

init2

isTimeDependent

  • isTimeDependent(): boolean
  • Returns boolean

lowerDiagonal

  • lowerDiagonal(): Real[]
  • Returns Real[]

setFirstRow

  • setFirstRow(valB: Real, valC: Real): void
  • Parameters

    Returns void

setLastRow

  • setLastRow(valA: Real, valB: Real): void
  • Parameters

    Returns void

setMidRow

  • Parameters

    Returns void

setMidRows

  • Parameters

    Returns void

setTime

  • setTime(t: Time): void
  • Parameters

    Returns void

size

  • Returns Size

solveFor1

  • solve linear system for a given right-hand side

    Parameters

    Returns Real[]

solveFor2

  • solveFor2(rhs: Real[], result: Real[]): void
  • solve linear system for a given right-hand side without result Array allocation. The rhs and result parameters can be the same Array, in which case rhs will be changed

    Parameters

    Returns void

upperDiagonal

  • upperDiagonal(): Real[]
  • Returns Real[]

Static add

Static identity

  • identity instance

    Parameters

    Returns TridiagonalOperator

Static mulScalar

Static sub