Properties
_antitheticVariate
_antitheticVariate: boolean
_arguments
_arguments: Arguments = new DiscreteAveragingAsianOption.Arguments()
Protected _brownianBridge
_brownianBridge: boolean
_controlVariate
_controlVariate: boolean
_isDisposed
_isDisposed: boolean = false
Protected _requiredSamples
Protected _requiredTolerance
_results
_results: Results = new DiscreteAveragingAsianOption.Results()
calculate1
calculate1
: (requiredTolerance
: Real, requiredSamples
: Size, maxSamples
: Size) => void
Type declaration
-
- (requiredTolerance: Real, requiredSamples: Size, maxSamples: Size): void
-
Parameters
-
requiredTolerance: Real
-
requiredSamples: Size
-
maxSamples: Size
Returns void
deepUpdate
deepUpdate: () => void
dispose
dispose: () => void
errorEstimate
error
Estimate: () => Real
getArguments
getArguments: () => Arguments
getResults
getResults: () => Results
isDisposed
isDisposed: boolean
mcsInit
mcs
Init: (antitheticVariate: boolean, controlVariate: boolean) => McSimulation
Type declaration
-
- (antitheticVariate: boolean, controlVariate: boolean): McSimulation
-
Parameters
-
antitheticVariate: boolean
-
controlVariate: boolean
notifyObservers
notifyObservers: () => void
registerWithObservables
register
WithObservables: (o: Observer) => void
unregisterObserver
unregister
Observer: (o: Observer) => void
unregisterWithAll
unregisterWithAll: () => void
update
update: () => void
valueWithSamples
value
WithSamples: (samples: Size) => Real
Monte Carlo pricing engine for discrete arithmetic average price Asian
Monte Carlo pricing engine for discrete arithmetic average price Asian options. It can use MCDiscreteGeometricAPEngine (Monte Carlo discrete arithmetic average price engine) and AnalyticDiscreteGeometricAveragePriceAsianEngine (analytic discrete arithmetic average price engine) for control variation.
test the correctness of the returned value is tested by reproducing results available in literature.