Options
All
  • Public
  • Public/Protected
  • All
Menu

multi-dimensional stochastic process class

This class describes a stochastic process governed by:

$$ d\mathrm{x}_t = \mu(t, x_t)\mathrm{d}t + \sigma(t, \mathrm{x}_t) \cdot d\mathrm{W}_t. $$

Hierarchy

Implements

Index

Properties

_discretization

_discretization: discretization

_isDisposed

_isDisposed: boolean = false

_observables

_observables: Set<Observable> = new Set()

_observers

_observers: Set<Observer> = new Set()

dispose

dispose: () => void

Type declaration

    • (): void
    • Returns void

isDisposed

isDisposed: boolean

notifyObservers

notifyObservers: () => void

Type declaration

    • (): void
    • Returns void

registerObserver

registerObserver: (o: Observer) => void

Type declaration

registerWith

registerWith: (h: Observable) => void

Type declaration

registerWithObservables

registerWithObservables: (o: Observer) => void

Type declaration

unregisterObserver

unregisterObserver: (o: Observer) => void

Type declaration

unregisterWith

unregisterWith: (h: Observable) => Size

Type declaration

unregisterWithAll

unregisterWithAll: () => void

Type declaration

    • (): void
    • Returns void

Methods

apply1

  • applies a change to the asset value. By default, it returns $ \mathrm{x} + \Delta \mathrm{x} $.

    Parameters

    Returns Real[]

covariance

  • returns the covariance $$ V(\mathrm{x}{t_0 + \Delta t} | \mathrm{x}{t_0} = \mathrm{x}_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Matrix

deepUpdate

  • deepUpdate(): void

diffusion1

  • returns the diffusion part of the equation, i.e. $ \sigma(t, \mathrm{x}_t) $

    Parameters

    Returns Matrix

drift1

  • returns the drift part of the equation, i.e., $ \mu(t, \mathrm{x}_t) $

    Parameters

    Returns Real[]

evolve1

  • returns the asset value after a time interval $\Delta$ according to the given discretization. By default, it returns $$ E(\mathrm{x}_0,t_0,\Delta t) + S(\mathrm{x}_0,t_0,\Delta t) \cdot \Delta \mathrm{w} $$ where $E$ is the expectation and $S$ the standard deviation.

    Parameters

    Returns Real[]

expectation1

  • returns the expectation $$ E(\mathrm{x}{t_0 + \Delta t} | \mathrm{x}{t_0} = \mathrm{x}_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Real[]

factors

  • returns the number of independent factors of the process

    Returns Size

init

initialValues

  • initialValues(): Real[]
  • returns the initial values of the state variables

    Returns Real[]

size

  • returns the number of dimensions of the stochastic process

    Returns Size

stdDeviation1

  • returns the standard deviation $$ S(\mathrm{x}{t_0 + \Delta t} | \mathrm{x}{t_0} = \mathrm{x}_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Matrix

time

  • time(d: Date): Time
  • returns the time value corresponding to the given date in the reference system of the stochastic process.

    note As a number of processes might not need this functionality, a default implementation is given which raises an exception.

    Parameters

    • d: Date

    Returns Time

update

  • update(): void