Options
All
  • Public
  • Public/Protected
  • All
Menu

External module "ql/math/autocovariance"

Index

Functions

autocorrelations1

  • Unbiased auto-correlations.

    Results are calculated via FFT. The first element of the output is the unbiased sample variance.

    Input data are supposed to be centered (i.e., zero mean). The size of the output sequence must be maxLag + 1

    Parameters

    Returns void

autocorrelations2

  • Unbiased auto-correlations.

    Results are calculated via FFT. The first element of the output is the unbiased sample variance.

    This overload accepts non-centered data, removes the mean and returns it as a result. The centered sequence is written back into the input sequence if the reuse parameter is true.

    The size of the output sequence must be maxLag + 1

    Parameters

    Returns Real

autocovariances1

  • Unbiased auto-covariances

    Results are calculated via FFT.

    • Input data are supposed to be centered (i.e., zero mean).
    • The size of the output sequence must be maxLag + 1

    Parameters

    Returns void

autocovariances2

  • Unbiased auto-covariances

    This overload accepts non-centered data, removes the mean and returns it as a result. The centered sequence is written back into the input sequence if the reuse parameter is true.

    The size of the output sequence must be maxLag + 1

    Parameters

    Returns Real

convolutions

  • Convolutions of the input sequence.

    Calculates $x[0]x[n]+x[1]x[n+1]+x[2]*x[n+2]+...$

    for n = 0,1,...,maxLag via FFT.

    The size of the output sequence must be maxLag + 1

    Parameters

    Returns void

double_ft

  • Parameters

    Returns Complex[]

remove_mean