Options
All
  • Public
  • Public/Protected
  • All
Menu

External module "ql/math/matrixutilities/pseudosqrt"

Index

Functions

checkSymmetry

  • checkSymmetry(matrix: Matrix): void
  • Parameters

    Returns void

highamImplementation

  • highamImplementation(A: Matrix, maxIterations: Size, tolerance: Real): number[][]
  • Parameters

    Returns number[][]

hypersphereOptimize

  • hypersphereOptimize(targetMatrix: Matrix, currentRoot: Matrix, lowerDiagonal: boolean): Matrix
  • Optimization function for hypersphere and lower-diagonal algorithm

    Parameters

    • targetMatrix: Matrix
    • currentRoot: Matrix
    • lowerDiagonal: boolean

    Returns Matrix

normInf

  • Parameters

    Returns Real

normalizePseudoRoot

  • Parameters

    Returns void

projectToPositiveSemidefiniteMatrix

  • Parameters

    Returns Matrix

projectToUnitDiagonalMatrix

  • Parameters

    Returns Matrix

pseudoSqrt

  • Returns the pseudo square root of a real symmetric matrix

    Given a matrix $ M $, the result $ S $ is defined as the matrix such that $ S S^T = M. $ If the matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.

    For more information see: R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, The Journal of Risk, 2(2), Winter 1999/2000. http://www.rebonato.com/correlationmatrix.pdf

    Revised and extended in "Monte Carlo Methods in Finance", by Peter Jäckel, Chapter 6.

    the given matrix must be symmetric.

    relates Matrix

    warning Higham algorithm only works for correlation matrices.

    test

    • the correctness of the results is tested by reproducing known good data.
    • the correctness of the results is tested by checking returned values against numerical calculations.

    Parameters

    • matrix: Matrix
    • Default value sa: Type = SalvagingAlgorithm.Type.None

    Returns Matrix

rankReducedSqrt

  • Returns the rank-reduced pseudo square root of a real symmetric matrix

    The result matrix has rank<=maxRank. If maxRank>=size, then the specified percentage of eigenvalues out of the eigenvalues' sum is retained.

    If the input matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.

    the given matrix must be symmetric.

    relates Matrix

    Parameters

    Returns Matrix