Options
All
  • Public
  • Public/Protected
  • All
Menu

Abcd functional form

$$ f(t) = [ a + b * t ] e^{-c * t} + d $$

following Rebonato's notation.

Hierarchy

Implements

Index

Properties

Private _K

_K: Real

Protected _a

_a: Real

Private _abcd

_abcd: Real[]

Protected _b

_b: Real

Protected _c

_c: Real

Protected _d

_d: Real

Private _da

_da: Real

Private _dabcd

_dabcd: Real[] = [null, null, null, null]

Private _db

_db: Real

Private _diacplusbcc

_diacplusbcc: Real

Private _dibc

_dibc: Real

Private _pa

_pa: Real

Private _pb

_pb: Real

Methods

Private _initialize

  • _initialize(): void
  • Returns void

a

  • Returns Real

b

  • Returns Real

c

  • Returns Real

coefficients

  • coefficients(): Real[]
  • Returns Real[]

d

  • Returns Real

definiteDerivativeCoefficients

  • coefficients of a AbcdMathFunction defined as definite derivative on a rolling window of length tau, with tau = t2-t

    Parameters

    Returns Real[]

definiteIntegral

  • definite integral of the function between t1 and t2

    $$ \int_{t1}^{t2} f(t)dt $$

    Parameters

    Returns Real

definiteIntegralCoefficients

  • coefficients of a AbcdMathFunction defined as definite integral on a rolling window of length tau, with tau = t2-t

    Parameters

    Returns Real[]

derivative

  • first derivative of the function at time t

    $$ f'(t) = [ ( b-c * a ) + ( -c * b)*t) ] e^{-c*t} $$

    Parameters

    Returns Real

derivativeCoefficients

  • derivativeCoefficients(): Real[]
  • Returns Real[]

f

  • function value at time t: $ f(t) $

    Parameters

    Returns Real

init1

  • Parameters

    • Default value a: Real = 0.002
    • Default value b: Real = 0.001
    • Default value c: Real = 0.16
    • Default value d: Real = 0.0005

    Returns AbcdMathFunction

init2

longTermValue

  • longTermValue(): Real
  • function value at time +inf: $ f(\inf) $

    Returns Real

maximumLocation

  • maximumLocation(): Time
  • time at which the function reaches maximum (if any)

    Returns Time

maximumValue

  • maximumValue(): Real
  • maximum value of the function

    Returns Real

primitive1

  • indefinite integral of the function at time t

    $$ \int f(t)dt = [ (-a/c-b/c^2) + (-b/c)*t ] e^{-c*t} + d*t $$

    Parameters

    Returns Real

Static validate

  • Parameters

    Returns void