Properties
Private _K
Protected _a
Private _abcd
Protected _b
Protected _c
Protected _d
Private _da
Private _dabcd
_dabcd
: Real[] = [null, null, null, null]
Private _db
Private _diacplusbcc
Private _dibc
Private _pa
Private _pb
Methods
Private _initialize
-
Returns void
a
-
b
-
c
-
coefficients
-
Returns Real[]
d
-
definiteDerivativeCoefficients
-
Parameters
Returns Real[]
definiteIntegral
-
Parameters
definiteIntegralCoefficients
-
Parameters
Returns Real[]
derivative
-
Parameters
derivativeCoefficients
- derivativeCoefficients(): Real[]
-
Returns Real[]
f
-
Parameters
init1
-
Parameters
-
Default value a: Real = 0.002
-
Default value b: Real = 0.001
-
Default value c: Real = 0.16
-
Default value d: Real = 0.0005
init2
-
Parameters
longTermValue
-
maximumLocation
-
maximumValue
-
primitive1
-
Parameters
Static validate
-
Parameters
Returns void
Abcd functional form
$$ f(t) = [ a + b * t ] e^{-c * t} + d $$
following Rebonato's notation.