Options
All
  • Public
  • Public/Protected
  • All
Menu

Abcd functional form for instantaneous volatility

$$ f(T-t) = [ a + b(T-t) ] e^{-c(T-t)} + d $$ following Rebonato's notation.

Hierarchy

Implements

Index

Constructors

constructor

  • Parameters

    • Default value a: Real = -0.06
    • Default value b: Real = 0.17
    • Default value c: Real = 0.54
    • Default value d: Real = 0.17

    Returns AbcdFunction

Properties

Protected _a

_a: Real

Protected _b

_b: Real

Protected _c

_c: Real

Protected _d

_d: Real

Methods

a

b

c

coefficients

  • coefficients(): Real[]

covariance1

  • instantaneous covariance function at time t between T-fixing and S-fixing rates $ f(T-t)f(S-t) $

    Parameters

    Returns Real

covariance2

  • integral of the instantaneous covariance function between time t1 and t2 for T-fixing and S-fixing rates $$ \int_{t1}^{t2} f(T-t)f(S-t)dt $$

    Parameters

    Returns Real

d

definiteDerivativeCoefficients

definiteIntegral

definiteIntegralCoefficients

derivative

  • first derivative of the function at time t

    $$ f'(t) = [ ( b-c * a ) + ( -c * b)*t) ] e^{-c*t} $$

    Parameters

    Returns Real

derivativeCoefficients

  • derivativeCoefficients(): Real[]

f

  • function value at time t: $ f(t) $

    Parameters

    Returns Real

init1

init2

instantaneousCovariance

  • instantaneous covariance at time t between T and S fixing rates: $ f(T-u)f(S-u) $

    Parameters

    Returns Real

instantaneousVariance

  • instantaneous variance at time t of T-fixing rate: $ f(T-t)f(T-t) $

    Parameters

    Returns Real

instantaneousVolatility

  • instantaneous volatility at time t of the T-fixing rate: $ f(T-t) $

    Parameters

    Returns Real

longTermValue

  • longTermValue(): Real

longTermVolatility

  • longTermVolatility(): Real
  • volatility function value at time +inf: $ f(\inf) $

    Returns Real

maximumLocation

  • maximumLocation(): Time

maximumValue

  • maximumValue(): Real

maximumVolatility

  • maximumVolatility(): Real
  • maximum value of the volatility function

    Returns Real

primitive1

  • indefinite integral of the function at time t

    $$ \int f(t)dt = [ (-a/c-b/c^2) + (-b/c)*t ] e^{-c*t} + d*t $$

    Parameters

    Returns Real

primitive2

  • indefinite integral of the instantaneous covariance function at time t between T-fixing and S-fixing rates $ \int f(T-t)f(S-t)dt $

    Parameters

    Returns Real

shortTermVolatility

  • shortTermVolatility(): Real
  • volatility function value at time 0: $ f(0) $

    Returns Real

variance

  • variance between tMin and tMax of T-fixing rate: $$ \frac{\int_{tMin}^{tMax} f^2(T-u)du}{tMax-tMin} $$

    Parameters

    Returns Real

volatility

  • average volatility in [tMin,tMax] of T-fixing rate: $$ \sqrt{ \frac{\int_{tMin}^{tMax} f^2(T-u)du}{tMax-tMin} } $$

    Parameters

    Returns Real

Static validate