Options
All
  • Public
  • Public/Protected
  • All
Menu

Integral of a 1-dimensional function using the Gauss-Kronrod methods This class provide an adaptive integration procedure using 15 points Gauss-Kronrod integration rule. This is more robust in that it allows to integrate less smooth functions (though singular functions should be integrated using dedicated algorithms) but less efficient beacuse it does not reuse precedently computed points during computation steps.

References:

Gauss-Kronrod Integration <http://mathcssun1.emporia.edu/~oneilcat/ExperimentApplet3/ ExperimentApplet3.html>

NMS - Numerical Analysis Library http://www.math.iastate.edu/burkardt/f_src/nms/nms.html

test the correctness of the result is tested by checking it against known good values.

Hierarchy

Implements

Index

Constructors

constructor

Methods

absoluteAccuracy

  • absoluteAccuracy(): Real

absoluteError

  • absoluteError(): Real

f

increaseNumberOfEvaluations

  • increaseNumberOfEvaluations(increase: Size): void

Protected integrate

Private integrateRecursively

integrationSuccess

  • integrationSuccess(): boolean

maxEvaluations

  • maxEvaluations(): Size

numberOfEvaluations

  • numberOfEvaluations(): Size

setAbsoluteAccuracy

  • setAbsoluteAccuracy(accuracy: Real): void

setAbsoluteError

  • setAbsoluteError(error: Real): void

setMaxEvaluations

  • setMaxEvaluations(maxEvaluations: Size): void

setNumberOfEvaluations

  • setNumberOfEvaluations(evaluations: Size): void