Options
All
  • Public
  • Public/Protected
  • All
Menu

Integral of a 1-dimensional function using the Gauss-Kronrod methods

This class provide a non-adaptive integration procedure which uses fixed Gauss-Kronrod abscissae to sample the integrand at a maximum of 87 points. It is provided for fast integration of smooth functions.

This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession until an estimate of the integral of f over (a, b) is achieved within the desired absolute and relative error limits, epsabs and epsrel. The function returns the final approximation, result, an estimate of the absolute error, abserr and the number of function evaluations used, neval. The Gauss-Kronrod rules are designed in such a way that each rule uses all the results of its predecessors, in order to minimize the total number of function evaluations.

Hierarchy

Implements

Index

Constructors

constructor

Properties

Private _relativeAccuracy

_relativeAccuracy: Real

Methods

absoluteAccuracy

  • absoluteAccuracy(): Real

absoluteError

  • absoluteError(): Real

f

increaseNumberOfEvaluations

  • increaseNumberOfEvaluations(increase: Size): void

Protected integrate

integrationSuccess

  • integrationSuccess(): boolean

maxEvaluations

  • maxEvaluations(): Size

numberOfEvaluations

  • numberOfEvaluations(): Size

relativeAccuracy

  • relativeAccuracy(): Real
  • Returns Real

setAbsoluteAccuracy

  • setAbsoluteAccuracy(accuracy: Real): void

setAbsoluteError

  • setAbsoluteError(error: Real): void

setMaxEvaluations

  • setMaxEvaluations(maxEvaluations: Size): void

setNumberOfEvaluations

  • setNumberOfEvaluations(evaluations: Size): void

setRelativeAccuracy

  • setRelativeAccuracy(a: Real): void
  • Parameters

    Returns void