Options
All
  • Public
  • Public/Protected
  • All
Menu

Merton (1973) extension to the Black-Scholes stochastic process

This class describes the stochastic process ln(S) for a stock or stock index paying a continuous dividend yield given by $$ d\ln S(t, S) = (r(t) - q(t) - \frac{\sigma(t, S)^2}{2}) dt + \sigma dW_t. $$

Hierarchy

Implements

Index

Constructors

constructor

Properties

_discretization

_discretization: discretization

_isDisposed

_isDisposed: boolean = false

_observables

_observables: Set<Observable> = new Set()

_observers

_observers: Set<Observer> = new Set()

dispose

dispose: () => void

Type declaration

    • (): void
    • Returns void

isDisposed

isDisposed: boolean

notifyObservers

notifyObservers: () => void

Type declaration

    • (): void
    • Returns void

registerObserver

registerObserver: (o: Observer) => void

Type declaration

registerWith

registerWith: (h: Observable) => void

Type declaration

registerWithObservables

registerWithObservables: (o: Observer) => void

Type declaration

unregisterObserver

unregisterObserver: (o: Observer) => void

Type declaration

unregisterWith

unregisterWith: (h: Observable) => Size

Type declaration

unregisterWithAll

unregisterWithAll: () => void

Type declaration

    • (): void
    • Returns void

Methods

apply1

apply2

blackVolatility

covariance

deepUpdate

  • deepUpdate(): void

diffusion1

diffusion2

dividendYield

drift1

drift2

evolve1

evolve2

expectation1

expectation2

factors

  • returns the number of independent factors of the process

    Returns Size

init

init1

init2

initialValues

  • initialValues(): Real[]

localVolatility

riskFreeRate

size

stateVariable

stdDeviation1

stdDeviation2

time

  • time(d: Date): Time

update

  • update(): void

variance

x0