Options
All
  • Public
  • Public/Protected
  • All
Menu

Geometric brownian-motion process

This class describes the stochastic process governed by $$ dS(t, S)= \mu S dt + \sigma S dW_t. $$

Hierarchy

Implements

Index

Constructors

constructor

Properties

_discretization

_discretization: discretization

Protected _initialValue

_initialValue: Real

_isDisposed

_isDisposed: boolean = false

Protected _mue

_mue: Real

_observables

_observables: Set<Observable> = new Set()

_observers

_observers: Set<Observer> = new Set()

Protected _sigma

_sigma: Real

dispose

dispose: () => void

Type declaration

    • (): void
    • Returns void

isDisposed

isDisposed: boolean

notifyObservers

notifyObservers: () => void

Type declaration

    • (): void
    • Returns void

registerObserver

registerObserver: (o: Observer) => void

Type declaration

registerWith

registerWith: (h: Observable) => void

Type declaration

registerWithObservables

registerWithObservables: (o: Observer) => void

Type declaration

unregisterObserver

unregisterObserver: (o: Observer) => void

Type declaration

unregisterWith

unregisterWith: (h: Observable) => Size

Type declaration

unregisterWithAll

unregisterWithAll: () => void

Type declaration

    • (): void
    • Returns void

Methods

apply1

apply2

  • applies a change to the asset value. By default, it returns $ x + \Delta x $.

    Parameters

    Returns Real

covariance

deepUpdate

  • deepUpdate(): void

diffusion1

diffusion2

drift1

drift2

evolve1

evolve2

  • returns the asset value after a time interval $ \Delta t $ according to the given discretization. By default, it returns $$ E(x_0,t_0,\Delta t) + S(x_0,t_0,\Delta t) \cdot \Delta w $$ where $ E $ is the expectation and $ S $ the standard deviation.

    Parameters

    Returns Real

expectation1

expectation2

  • returns the expectation $$ E(x_{t_0 + \Delta t} | x_{t_0} = x_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Real

factors

  • returns the number of independent factors of the process

    Returns Size

init

initialValues

  • initialValues(): Real[]

size

stdDeviation1

stdDeviation2

  • returns the standard deviation $$ S(x_{t_0 + \Delta t} | x_{t_0} = x_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Real

time

  • time(d: Date): Time
  • returns the time value corresponding to the given date in the reference system of the stochastic process.

    note As a number of processes might not need this functionality, a default implementation is given which raises an exception.

    Parameters

    • d: Date

    Returns Time

update

  • update(): void

variance

  • returns the variance $$ V(x_{t_0 + \Delta t} | x_{t_0} = x_0) $$ of the process after a time interval $ \Delta t $ according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

    Parameters

    Returns Real

x0